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Abstract— In reinforcement learning (RL), sparse rewards
can present a significant challenge. Fortunately, expert actions
can be utilized to overcome this issue. However, acquiring
explicit expert actions can be costly, and expert observa-
tions are often more readily available. This paper presents
a new approach that uses expert observations for learning
in robot manipulation tasks with sparse rewards from pixel
observations. Specifically, our technique involves using expert
observations as intermediate visual goals for a goal-conditioned
RL agent, enabling it to complete a task by successively reaching
a series of goals. We demonstrate the efficacy of our method
in five challenging block construction tasks in simulation and
show that when combined with two state-of-the-art agents, our
approach can significantly improve their performance while
requiring 4-20 times fewer expert actions during training.
Moreover, our method is also superior to a hierarchical baseline.

I. INTRODUCTION

Learning from observations without explicit guidance from
an expert is an essential learning mechanism. Often, humans
lack precise knowledge of the actions taken by a human
expert, but they can deduce these actions by attempting
to reproduce the expert’s observations. For example, in
Figure 1, the task is to construct a desired structure consisting
of a triangle on top of a stack of three blocks. At the current
state s0 when all blocks are on the ground, the optimal move
is to form a stack of two blocks to reach the next state s1,
which closely resembles the scene an expert would observe
at the subsequent step (g). Forming the stack should be much
simpler than building the final structure, given only a pick
and a place actions are needed. This example shows that an
intermediate visual goal provided by expert observations can
break down a complex task into more manageable subtasks
and facilitate step-by-step task achievement.

This paper presents a hierarchical agent consisting of
a fixed top level and a learned bottom level. At the top
level, we use the indices of expert observations within an
expert episode as the abstract goals ḡ (see Figure 1) for
the bottom level to achieve. The bottom level implements
a goal-conditioned policy π(s, ḡ) that gradually realizes
these abstract goals until the task is completed. The goal
achievement is determined by comparing the abstract state
s̄ produced by a state abstractor C(s) with the corresponding
abstract goal ḡ. The state abstractor is a multi-class classifier
pre-trained using supervised learning with expert transitions.

This paper proposes a novel approach to improve the
performance of current state-of-the-art methods in the setting
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Fig. 1. We utilize expert observations as intermediate visual goals to train
a goal-conditioned policy. Using our approach, achieving a hard task (e.g.,
building a structure) equals achieving a series of easier goals sequentially.

of block construction tasks with sparse rewards and pixel-
based observations. Specifically, we apply our approach
to a version of Deep Q-Network (DQN) [1] and Strict
DQN from Demonstrations (SDQfD) [2] and demonstrate
substantial performance improvements in five challenging
tasks. Our approach relies on fewer expert actions and
utilizes expert observations as intermediate visual goals to
create a simple yet effective learning strategy. Moreover, we
also encode the domain symmetries into the state abstractor
and the RL agent to increase the performance further. Our
results indicate that our method outperforms the baselines,
including a strengthened version of h-DQN [3], with 4-20
times fewer expert actions. Additional information including
videos and code be found at https://sites.google.
com/view/leo-rb.

II. RELATED WORK

Goal-conditioned Reinforcement Learning is a popular
paradigm in which an RL agent seeks to achieve a goal,
which may be a specific state (e.g., moving a block to a spe-
cific position) or an abstract concept (e.g., building a desired
structure as in Figure 1). For more efficiency, goals are often
diversified. Most notably, Hindsight Experience Replay [4]
(HER) relabels previously visited states as goals. Instead
of choosing goals randomly from past states like HER, [5]
selects goals from previously visited states based on how
close they are to the original goal. However, in many tasks
such as the one in Figure 1, useful goals may be difficult
to visit by random actions, making relabelling unhelpful.
In this work, we proposed to use expert observations as
goals. Recent work in this area includes [6], which uses
visual goals to navigate the open world, [7], which chooses
goals from successful demonstration trajectories, and [8],
which employs a hand-coded abstraction function and goal
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graph for selecting goals to learn a multi-task policy in
block construction domains. Our approach differs because
we automatically propose abstract goals (using a learned state
abstractor, not a hand-coded one like [8]) instead of explicit
ones selected from previous states like [6], [7] and operate in
a single-task setting unlike [8]. Moreover, we encode domain
symmetries in our agent to enhance efficiency.
Hierarchical Reinforcement Learning (HRL) can break
down a long-horizon RL task into smaller subtasks, which are
more manageable. HRL has demonstrated superior perfor-
mance over non-hierarchical approaches in various tasks [3],
[9], [10]. Furthermore, [11], [12] utilize imitation learning to
improve the hierarchical subgoal selection process to achieve
better performance. Our approach is similar to h-DQN [3],
which involves concurrently training two DQN [1] agents.
However, instead of learning two levels in parallel, which
often causes instability, we only learn the bottom level. At the
top level, we use expert observations as goals for the bottom
level to achieve, which we found to be more effective.
Equivariant Neural Networks can encode chosen sym-
metries within their structures, greatly enhancing gener-
alization and sample efficiency. The idea was introduced
by G-Convolution [13] and Steerable Convolutional Neural
Networks (CNN) [14] and has since been utilized in com-
puter vision [15], [16] and reinforcement learning [17]. In
particular, earlier works [2], [18], [19], [20] have successfully
applied equivariant networks to robot manipulation. We also
found that using equivariant networks for our RL agent and
state abstractor can increase task performance.
Block Construction Tasks. In the context of these challeng-
ing tasks, unlike other methods, such as object-factored mod-
els used in [21] and [22], our approach learns directly from
image observations and sparse rewards. Additionally, [23],
[24] perform model-based planning in a learned latent space
to tackle block construction tasks from pixels. Recently, [25]
proposed a new manipulation benchmark involving pick-
ing and placing objects of complex geometries, adopted
by several [26], [27]. However, in this work, we consider
block construction tasks of regular shapes, taken from the
BulletArm benchmark [28].

III. BACKGROUND

A. Goal-conditioned DQN

A goal-conditioned Markov decision process (MDP) is
defined by the tuple (S,A,G, T,R), where S is the state
space, A is the discrete action space, G is the goal space,
T (s, a, s′) = p(s′ | s, a) is the transition function that
gives the probability of reaching state s′ given an action
a ∈ A is taken in state s, R(s, a, s′, g) is the reward
function. The objective is to find a goal-conditioned pol-
icy π(s, g) that maximizes the expected discounted return
Eπ[

∑∞
t=0 γ

trt | s0, g] with a discount factor γ ∈ [0, 1),
starting with initial state s0 and goal g. In contrast to
DQN [1], which learns the optimal Q-function using transi-
tions of the form (s, a, s′, r), the optimal goal-conditioned
Q-function Q∗(s, a, g) is learned using transitions of the

form (s, a, s′, r, g) [29]. From Q∗(s, a, g), we can obtain an
optimal goal-conditioned policy π∗(s, g):

π∗(s, g) = argmaxa Q
∗(s, a, g). (1)

B. Group Equivariance and Invariance

Given a symmetry group G and an element α ∈ G, a
function f : X → Y is equivariant if f(αx) = αf(x),
and invariant if f(αx) = f(x). More precisely, how α
acts on X or Y depends on the representation ρ of the
symmetry group G. For instance, if G is a group of planar
rotations and x is a single-channel image, then αx = ρ(α)x
will be a multiplication between a rotation matrix ρ(α)
and an image x, resulting in a rotated image. However,
for clarity, in the remainder of the paper, we use αx =
ρ(α)x to denote the action of α on x without referring to
any specific representation ρ. For more details about group
representations, please refer to [30].

C. Group-invariant MDP in SE(2)

Many manipulation tasks of rigid blocks from top-down
images [28] have the symmetry about the rotation and
translation in plane R2 (i.e., spanning the special Euclidean
group SE(2)). Such tasks can be defined as a group-invariant
MDP [31], which is invariant in SE(2) by satisfying the
following conditions for all group element α ∈ SE(2):

• Reward Invariance:

R(s, a, s′) = R(αs, αa, αs′). (2)

• Transition Invariance:

T (s, a, s′) = T (αs, αa, αs′). (3)

The key feature of a group-invariant MDP is that its optimal
Q-function is invariant, i.e., Q∗(s, a) = Q∗(αs, αa) for
all α ∈ SE(2). This invariance property is the foundation
to build very sample-efficient RL agents [18], [2], [31] by
directly encoding the property into the Q-network structure.

D. Strict DQfD (SDQfD)

Besides fitting the Q-function Q(s, a) similar to DQN [1],
DQfD [32] leverages expert demonstrations by permanently
storing the expert transitions inside the replay buffer. Specif-
ically, DQfD additionally minimizes a margin loss to force
the value of non-expert actions to be below the value of
expert actions given the same state:

LM = Es,ae [max
a

(Q(s, a) + l(a, ae))−Q(s, ae)] , (4)

where ae is an expert action in state s and l(a, ae) is penalty
that is positive when a is non-expert and is 0 otherwise.

In large action spaces, SDQfD [2] utilizes a similar penalty
but applies it to all non-expert actions that have Q-values
higher than that of an expert action (given the same state)
minus the penalty. The replacement of LM is a new strict
margin loss defined as:

LSM =
1

|As,ae |
∑

a∈As,ae

[Q(s, a) + l(a, ae)−Q(s, ae)] , (5)



where As,ae

is set of actions satisfied:

As,ae

= {a ∈ A | Q(s, a) + l(a, ae) > Q(s, ae)}. (6)

SDQfD considerably outperformed both DQfD and DQN
with demonstrations in many block construction tasks with
sparse rewards [2].

IV. STRUCTURE CONSTRUCTION FROM PIXELS

Block-Stacking House-Building-1 House-Building-2 House-Building-3 House-Building-4

128x128

24x24

Goal

Robot Arm

Camera

X

Z

Y

Fig. 2. A visual description of our block construction tasks and a list of
five tasks considered for experiments.

TABLE I
MORE DETAILS ON TASKS.

Task BS HB1 HB2 HB3 HB4

Number of Blocks 4 4 3 4 6
Number of Optimal Steps 6 6 4 6 10
Max Number of Steps 10 10 10 10 20

Figure 2 shows five structure construction tasks in the
BulletArm benchmark [28], namely Block-Stacking (BS)
and House-Building-i (HBi) with i = {1, 2, 3, 4}. In these
tasks, a robot arm must construct a desired structure from
unstructured blocks using top-down depth images of the
scene taken by a camera on top (see an example task
in Figure 2). At the beginning of each episode, the agent is
presented with necessary blocks with random poses to build
the desired structure (see Table I for more task details).
State Space. We consider a state s = (I,H, k), where
I ∈ R128×128 is a top-down depth image of the scene,
H ∈ R24×24 is an in-hand image denoting the current object
in the gripper, and k ∈ {holding,empty} refers to the
current grasping status of the gripper. The in-hand image H
is an orthographic projection of the partial point cloud where
the last pick occurred (see Figure 2).
Action Space. An action a = (p, x, y, θ) where p ∈
{pick,place}, (x, y) are the pixel coordinate in I that
the agent wants to perform a pick or a place, and θ ∈
{0, π

16 ,
2π
16 , . . . ,

31π
16 } is the discretized rotation of the gripper

around the z axis. The value of p decides whether to close
the fingers (pick) or open the fingers (place). In this setting,
the action space is large, e.g., there are 2×128×128×32 =
1, 048, 576 possible discrete actions.

Reward. The agent is given a sparse reward r = 1.0 if
accomplishing the desired structure, else r = 0.0.
Translation and Rotation in SE(2). Given an arbitrary
rotation and translation in the plane α ∈ SE(2), here we
define how it would operate on a state s and an action a.
First, α operates on s = (I,H, k) by translating and rotating
I but leaving H and k unchanged:

αs = (αI,H, k). (7)

For an action a = (p, x, y, θ), it rotates and translates
the spatial components (x, y, θ) ∈ SE(2) but leaving p
unchanged:

αa = (p, αx, αy, αθ). (8)

0
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1 2 3
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RANDOM PLACEPICK HIGHESTRANDOM PLACE

Fig. 3. 0 → 6: A deconstruction planner decomposes a fully built structure
by randomly picking the highest block and placing it on the ground until the
structure is fully decomposed. Reverting 6 → 0 results in a demonstration
episode. Besides indexing, numbers are also used for abstract states.

Generating Expert Demonstrations. To collect expert
demonstrations, we utilize a simple deconstruction planner
similar to [28], [2], illustrated in Figure 3. The process
starts with the desired structure fully built; then, the highest
object is picked and randomly placed on the ground until the
structure is fully decomposed. We then reverse the trajectory
to obtain an expert episode. This process allows us to
efficiently generate expert episodes without requiring task-
specific expert policies, which would be difficult to obtain.

V. LEARNING WITH EXPERT OBSERVATIONS

A. Formulating as a Goal-Conditioned MDP

We formulate the problem of building a structure with N
blocks as a goal-conditioned MDP MG = (S,A, Ḡ, T,Rg),
where S, A, and T are the same as in the original problem.
The differences are the goal space and the reward function:

Ḡ = {0, 1, . . . , 2N − 2} (9)

Rg(s, a, s
′, ḡ) =

{
r, if 1(s̄′, ḡ) = 1

r − 1, otherwise ,
(10)

where Ḡ is an abstract goal space, ḡ ∈ Ḡ is an abstract goal,
1(.) is the indicator function, r is is the environment reward
(see Section IV), and s̄′ is the abstract state of s′. Notice
that besides rewarding 0 when the abstract goal is achieved
and −1 otherwise, our reward function gives the agent more
reward when the final structure is achieved successfully, i.e.,
when r = 1.0. This additional reward is to emphasize the



importance of achieving the desired structure. Moreover, the
indices in Ḡ are exactly the indices of expert observations
for the task (see Figure 3 for the task HB1).

Goal Achieved?

Environment

No

Reset Environment

State Abstractor

Abstract Goal

Target

Yes

Goal Achieved?

Environment

No

Reset Environment

State Abstractor

Abstract Goal

Target

6 5

Fig. 4. The agent starts at a state s where all the blocks are on the ground. In
this state, the abstract state is s̄ = 6, as illustrated in Figure 3. To construct
the desired structure in the middle, the agent must transition to the next
state, s′, which should resemble the scene numbered 5 in Figure 3, where
the agent picks up a red block. Therefore, the abstract goal is ḡ = s̄′ = s̄−1.
If the agent succeeds in achieving this goal in the following step, it will be
supplied with another goal. Otherwise, the environment will be reset.

To make the idea more concrete, Figure 4 shows how our
agent tackles the HB1 task. Initially, the agent is in state s,
where all the blocks are on the ground. This state corresponds
to an abstract state s̄ = 6, as depicted in Figure 3. To build
the desired structure, the agent must transition to the next
state s′ where it picks up a red block. This next state should
resemble the scene labeled as number 5 in Figure 3, making
the abstract goal ḡ = s̄′ = s̄ − 1 = 5. Since s and the
desired s′ are only one pick action away in Figure 3, the
agent should only need a single timestep to reach s′ from
s. Therefore, if the agent achieves the abstract goal in the
next timestep, it is presented with another goal; otherwise,
we reset the episode. In the ideal case, the process continues
until the desired structure is fully built, i.e., when the abstract
goal ḡ = 0 is achieved.

To facilitate such a learning process, our agent comprises
the following components:

• A state abstractor C(s):

C(s) : S → S̄ , (11)

where S̄ ≡ Ḡ.
• An implicit goal-conditioned policy extracted from a Q-

function:

π(s, ḡ) = argmaxa Q(s, a, ḡ). (12)

We also note that our formulation can be easily extended to
accommodate a more general goal space G. In such cases,
the goals can be actual expert observations, such as images,
rather than abstract states representing those observations.

B. State Abstractor

C(s) can be considered as a multi-class classifier that
maps each state s to its corresponding abstract state s̄. It is
responsible for determining goal achievement for our agent.
To train it, we use a dataset Dtrain of pairs (s, s̄) collected

from expert demonstrations. As shown in Figure 3, for each
state s in the expert episode, we use the index of s inside the
episode to be s̄. Given Dtrain, C(s) is trained by minimizing
the following cross-entropy loss:

LCE = − 1

|Dtrain|

|Dtrain|∑
i=1

2N−2∑
j=0

1[s̄i = j] log C(si)j , (13)

where |Dtrain| denotes the size of Dtrain. For each given
task, we pre-train C(s) and freeze it to use for checking goal
achievement. In addition, given a group element α ∈ SE(2),
then C(s) = C(αs), i.e., the abstract state should be the same
if we rotate and translate the state (e.g., top-down image).
Therefore, we construct it as an invariant function.

C. Learning Q(s, a, ḡ)

Augmented state representation (ASR) [2] is a powerful
method for learning the Q-function in domains with large
action spaces, as in our tasks. The idea is to transform
an MDP with a large action space into a new one with
more states but fewer actions. We also adopt ASR to learn
Q(s, a, ḡ) but modify it for our goal-conditioned MDP.

1) Transition Division: We first divide the action into
three components: the pick/place component: p, the position
component: axy = (x, y), and the rotation component:
θ. Now considering that the agent wants to achieve an
abstract goal ḡ at state s by deciding the next action
am = (pm, xm, ym, θm). Depending on the grasping status
k, whether to pick or place pm can be chosen using simple
logic: we pick when the gripper is currently empty and place
when it is holding something, i.e.,

pm =

{
pick, if k = empty

place, if k = holding
(14)

For selecting (xm, ym, θm), we need to learn Q(s, a, ḡ). ASR
does that by dividing the original transition, which is

s, ḡ
a−→ s′ , (15)

into two transitions. The position transition only involves
axy:

s, ḡ
axy−−→ s̃ , (16)

where s̃ ∈ S can be considered as the resulting next state
of the original transition after taking action a = (p, axy, 0).
The rotation transition only involves θ:

s̃, ḡ
θ−→ s′. (17)

2) Learning Factorial Q-functions: By the transition di-
vision, learning Q(s, a, ḡ) can be effectively performed by
learning a position Q-function Qxy(s, axy, ḡ) and a rotation
Q-function Qθ(s̃, θ, ḡ).

• Qxy decides where we should perform pick/place in
the image. As shown in Figure 5, it outputs two position
maps with the same size as I’s, corresponding for pm =
pick and pm = place. These two maps represent
the Q-values of picking or placing at a certain pixel
position concerning the current abstract goal ḡ. Now,
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Fig. 5. Learning Q(s, a, ḡ) in HB4 using goal-conditioned ASR [2]. Learning Q(s, a, ḡ) is divided into learning a position Q-function Qxy and a rotation
Q-function Qθ . Picking or placing (pm) is chosen based on the grasping status k. The red dots denote the selected pixel location to pick/place (xm, ym)
using Qxy and the subsequently selected rotation θm using Qθ . Qθ decides θm using a H and a small patch P around (xm, ym) of I .

during exploitation, the position to perform a pick/place
can be chosen greedily:

(xm, ym) = argmaxaxy
Qxy(s, axy, ḡ). (18)

• Qθ decides the rotation θm of the gripper when we
have decided where to pick/place. To do that, ASR
only considers a small patch P of I , centered around
(xm, ym). Instead of learning the original Qθ, we learn
Qθ(H,P, θ, ḡ), which should be sufficient to decide
the best θm given the information contained in H and
P . During exploitation, we simply greedily select the
orientation using a rotation map outputted by Qθ:

θm = argmaxθ Qθ(H,P, θ, ḡ). (19)

3) Invariant Factorial Q-functions: We show that Qxy

and Qθ are invariant so that they can be constructed as
invariant models. Following Section III-C, we will show that
the two Q-functions correspond to group-invariant MDPs
with invariant reward and transition functions.

From Equation (16), we can observe that the Q-function
Qxy(s, axy, ḡ) corresponds to the original goal-conditioned
MDP MG except that the action space is constrained by
only allowing θ = 0. We convert MG to be a traditional
MDP by using an augmented state (s, ḡ), which changes
the reward function of MG into R′

g((s, ḡ), axy, (s
′, ḡ)). The

new reward function is invariant because achieving ḡ should
be independent of the position and orientation of the scene.
Moreover, the transition is invariant because, in the task
setting, the outcome of an action should be invariant when
the scene and the action rotate and translate with the same
amount. Therefore, Qxy is invariant.

From Equation (17), because s̃ ∈ S, the orientation
transition s̃, ḡ

θ−→ s′ correspond to a transition in MG except
that now with actions being the rotations θ only. Therefore,
the same above logic can apply here with an augmented state
(s̃, ḡ) to show that Qθ is also invariant.

VI. EXPERIMENTS AND RESULTS

In the five structures considered, we want to investigate
whether our approach of learning from expert observations
(LEO) can help improve the performance of existing best RL
agents [28] for our tasks, namely, DQN and SDQfD.

A. Agents

To investigate the possible benefits of our approach on
DQN and SDQfD, we consider the following agents:

• DQN/SDQfD-x [28]: These are baselines that use x
demonstration episodes (with expert actions) by per-
manently storing them in the replay buffer. Note that
SDQfD better uses the demonstration using the mar-
gin loss (see Equation (5)). Both employ equivariant
ASR [18] and are currently state-of-the-art agents for
our tasks (see [28]).

• LEO-DQN/SDQfD-x (Ours): The versions of
DQN/SDQfD-x that use our approach (LEO-).
We also benchmark LEO-based agents’ performance
using non-invariant state abstractors (Non-Inv).

• h-DQN-100, h-SDQfD-100 are two-level hierarchical
agents based on h-DQN [3] agent that learn both levels
concurrently. The top learns to produce abstract goals,
and the bottom attempts to achieve them. Like our
agent, the bottom uses the same pre-trained C(s) to de-
termine goal achievement. We consider two versions of
these agents. The original version (Original) follows the
original reward scheme by only using the environment
rewards for the top level. We improve the original agents
(Modified) by additionally rewarding the top with 0 and
−1 if the bottom can or cannot achieve its abstract goals.
Furthermore, to stabilize training, we follow the practice
in [3] to pre-train the bottom level with random abstract
goals before training the two levels in parallel. It is also
worth noting that these agents also use equivariant ASR
and 100 demonstration episodes.

B. Evaluation Metrics

We compare methods using the success rates of an eval-
uation agent, which is evaluated for every 500 training (en-
vironment) steps. We train all agents in 25,000 environment
steps in HB4 (the hardest task) and in 10,000 environment
steps in the four remaining structures. The reported results
are averages of 4 seeds with shaded one standard error.

C. Learning Curves

We visualize all learning curves in Figure 6, where the top
row shows DQN-based agents and the bottom shows SDQfD-
based agents. Given the same demonstration episodes, LEO-
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Fig. 6. Evaluation success rate averaged over four seeds with shaded one standard error. The top row (grey background) contains DQN-based agents,
and the bottom row (white background) contains SDQfD-based agents. Note that all agents utilize equivariant ASR [18].

based agents outperform the original agents regarding final
performance and learning speed. The superiority is consistent
over all tasks and all algorithms (DQN/SDQfD) tested.
Moreover, given more (100) expert episodes, the original and
hierarchical agents are still outperformed by our agents with
4-20 times fewer expert actions used, e.g., our agents only
use 5, 15, or 25 expert episodes. The figure also indicates that
using an invariant state abstractor (solid green lines) benefits
our agents more than not (dotted green lines) in all cases
(except for DQN-based agents in BS), regardless of the al-
gorithms used. Finally, the original versions of h-DQN and h-
SDQfD perform much worse than our modified version. They
fail to learn in all tasks, probably due to a lack of positive
environment rewards for the top level to learn. In contrast,
with the modified reward function by rewarding/penalizing
the top when it produces achieved/unachieved abstract goals,
the modified version performs much better in all tasks.

D. Learning with No Expert Actions

We hypothesize that our approach can benefit learning
in specific tasks even when no expert actions are given.
To verify this hypothesis, we compare DQN and LEO-
DQN in HB1 and HB2 with no expert actions (we exclude
SDQfD because expert actions are required to implement
it, see Equation (5)). Figure 7 shows that LEO-DQN-0
agents (solid orange), even though they perform worse than
LEO-DQN-5 (as expected with fewer expert episodes), can
still greatly outperform DQN-0 agents (dotted orange lines).
Specifically, with no expert actions provided, DQN-0 agents
fail to learn both tasks, while LEO-DQN-5 can nearly master
the two tasks at the end of training.

House-Building-1 House-Building-2

Fig. 7. Performance in HB1 and HB2 when no expert actions are used.

E. Implementation Details

Our code is implemented in PyTorch [33], and all op-
timization uses the Adam [34] optimizer. Below we only
highlight key implementation for Q-functions and the state
abstractor (see our website for their detailed diagrams).
Discrete Approximation of SE(2). In practice, it is com-
mon to approximate the infinite group SE(2) with finite
groups [30], [35]. Follow the previous work [2], we approx-
imate SE(2) with ŜE(2), which is the cross product between
{1, . . . , 128} × {1, . . . , 128} ⊂ Z2 and the cyclic group
C32 = {kπ/16 : 0 ≤ k < 32, k ∈ Z}.
Q-functions of all agents are constructed by equivariant
ASR networks [2], implemented using the e2cnn [30]
library. Non-equivariant inputs, such as in-hand images and
abstract goals, are integrated into our agents using Dynamic
Filter [18]. We use the dihedral group D4 for Qxy and
C32 group for Qθ, where D4 is C4 = {kπ/2 : 0 ≤ k <
4, k ∈ Z} combined with the reflection symmetry. All agents
are trained with a learning rate of 1e-4. The batch size is
set to 32, and the discount is 0.95. We run five simulated
environments in parallel to collect transitions for training.
The size of the cropped patch P is 24× 24 pixels.
State Abstractor uses two branches to extract features from
the top-down and the in-hand images. The branch for top-
down images is a series of five [Conv+Max-Pool] modules.
The branch for in-hand images only consists of three such
modules. The extracted features are then concatenated before
going through three fully-connected layers and a softmax
layer at the end. The invariant state abstractor replaces the
traditional CNNs with equivariant CNNs using the group D4.
For each task, we train our state abstractors in 12,000 training
steps with a batch size of 32 using a learning rate of 1e-3.
The number of samples per class for training C(s) in BS and
HB1 is 250, in HB2 and HB3 is 500, and in HB4 is 1000.

VII. CONCLUSIONS

This paper showed that expert observations could be bene-
ficial learning signals when expert actions are only sparingly
provided. Even though we only demonstrate the improved
performance on DQN and SDQfD, we project that our



approach should benefit other off-policy learning algorithms.
The limitation of our approach is that the state abstractor,
which acts similarly to human eyes, must be sufficiently
good, ideally trained from optimal experts. Moreover, while
we have used equivariant neural networks to improve the
efficiency and generalization of our state abstractor, it cannot
currently handle outliers [36], which can be addressed using
approaches [37], [38] that equip classifiers with such an
ability. Recognizing outliers might lead to more sample
efficiency as the state abstractor can signal a reset to an
environment when the agent is in bad and/or unrecoverable
states. Nevertheless, although our state abstractor is trained
using the in-distribution data from expert demonstrations, it
still helps LEO-based agents perform well.
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